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1. INTRODUCTION

The Ricci tensor S of a semi-Riemannian manifold (M,g) is defined by

S(X ,Y ) = trace{Z → R(Z,X)Y},

where R is the curvature tensor of M which is defined by R(X ,Y ) = [∇X ,∇Y ]−∇[X ,Y ] and ∇ denotes the Levi-
Civita connection of the metric g; and X ,Y denote arbitrary tangent vector fields of the tangent bundle of the
manifold. The Ricci tensor S is said to be parallel (with respect to the Levi-Civita connection) if

∇S = 0. (1)

The parallelism of the Ricci tensor S has been studied by many researchers for a long time in differential
geometry (see some earlier literature [13, 20]). When the manifold admits some additional structures, new
parallelism of the Ricci tensor appeared. Next, let M2n+1 be an almost contact metric manifold (see its detailed
definition in Section two) endowed with an almost contact metric structure (φ ,ξ ,η ,g). The Ricci tensor S of
M2n+1 is said to be η-parallel (see [11]) if

(∇φX S)(φY,φZ) = 0 (2)

for any vector fields X ,Y and Z. By definition, the following relationship is valid:

(1) ⇒ (2).

In general, the converse of the above relationship is not necessarily valid on an almost contact metric manifold.
For example see some results for almost coKähler cases of dimension three in Section three. Here, we have to
point out that (1) is a very strong condition for an almost contact metric manifold, while (2) is more adapted to
the associated almost contact metric structure.
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The so called ∗-Ricci tensor was first introduced on an almost Hermitian manifold by Tachibana in [21].
Later, such a notion was defined on real hypersurfaces of nonflat complex space forms by Kaimakamis and
Panagiotidou in [10]. In recent time, ∗-Ricci tensor on an almost contact metric manifold (M,φ ,ξ ,η ,g) was
considered in [7, 14, 27] as the following

S∗(X ,Y ) =
1
2

trace{Z → R(X ,φY )φZ} (3)

for any vector fields X ,Y . The ∗-Ricci operator Q∗ of ∗-Ricci tensor S∗ with respect to g is expressed by
g(Q∗X ,Y ) = S∗(X ,Y ). Note that Q∗ is not a symmetric operator in general. In analogy with the usual Ricci
tensor, the ∗-Ricci tensor S∗ is said to be parallel (with respect to the Levi-Civita connection) if

∇S∗ = 0. (4)

Generalizing condition (4), on an almost contact metric manifold one may consider

(∇X Q∗)Y = (∇Y Q∗)X (5)

and
(∇φX S∗)(φY,φZ) = 0 (6)

for any vector fields X ,Y,Z. In general, if (5) and (6) are true, then we say that the ∗-Ricci tensor is of Codazzi
type and η-parallel, respectively.

Very recently, Venkatesha et al. in [22] considered (5) on a non-coKähler almost coKähler 3-manifold.
However, their result (see [22, Theorem 3.6]) needs some strong restrictions (namely the Reeb vector field
ξ is strongly normal and ∥∇ξ h∥ is invariant along the Reeb flow). In this paper, we shall prove a complete
classification theorem for an almost coKähler 3-manifold whose ∗-Ricci tensor is parallel (or vanishing) under
a more weaker restriction. This makes main results in [22] being some special cases of our main theorem.
According to our theorem, some non-homogeneous almost coKähler 3-manifolds with ∗-Ricci parallelism can
be found.

2. ALMOST COKÄHLER MANIFOLDS

By an almost contact metric manifold, we refer to a Riemannian manifold M2n+1 of dimension 2n+ 1,
n ≥ 1, on which there exists an almost contact structure (φ ,ξ ,η) satisfying

φ
2 =−id+η ⊗ξ , η ◦φ = 0, (7)

and a Riemannian metric g such that

g(φX ,φY ) = g(X ,Y )−η(X)η(Y ) (8)

for any vector fields X ,Y , where φ is a (1,1)-type tensor field; ξ is a vector field called the Reeb vector field
and η is a global one-form called the almost contact form ( [2]). On the product M2n+1×R of an almost contact
metric manifold M2n+1 and R, there is an almost complex structure J defined by

J
(

X , f
d
dt

)
=

(
φX − f ξ ,η(X)

d
dt

)
,

where X denotes a vector field tangent to M2n+1, t is the coordinate of R and f is a C ∞-function on M2n+1 ×R.
The almost contact metric manifold is said to be normal if J is integrable, or equivalently,

[φ ,φ ] =−2dη ⊗ξ ,

where [φ ,φ ] is the the Nijenhuis tensor of φ .
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An almost coKähler manifold is defined as an almost contact metric manifold on which there hold dη = 0
and dΦ = 0, where Φ is the fundamental two-form defined by Φ(X ,Y ) = g(X ,φY ). A normal almost coKähler
manifold is said to be a coKähler manifold (see [1,2]). An almost coKähler manifold is coKähler if and only if
(see [1])

∇φ = 0. (9)

Let 2h be the Lie derivative of the structure tensor field φ along the Reeb vector field. On an almost coKähler
manifold we put l = R(·,ξ )ξ and h′ = h ◦φ . The three (1,1)-type tensor fields l, h′ and h are symmetric and
satisfy

∇ξ = h′, (10)

∇ξ h =−h2
φ +φ l, (11)

and
hξ = 0, lξ = 0, trh = 0, tr(h′) = 0, hφ +φh = 0. (12)

We remark that (almost) coKähler manifolds are also known as (almost) cosymplectic manifolds (see [3]). The
above all fundamental results on an almost coKähler manifold can be seen in [2, 3, 16].

3. RICCI PARALLELISM

In this section, first let us recall some known results regarding Ricci parallelism on an almost coKähler
3-manifold. On any Riemannian manifold (M,g) of dimension three, the curvature tensor R is given by

R(X ,Y )Z =g(Y,Z)QX −g(X ,Z)QY +g(QY,Z)X

−g(QX ,Z)Y − r
2
(g(Y,Z)X −g(X ,Z)Y )

(13)

for any vector fields X ,Y and Z. Taking the covariant derivative of the above equality gives

(∇X R)(Y,Z)W

=g(Z,W )(∇X Q)Y −g(Y,W )(∇X Q)Z +g((∇X Q)Z,W )Y

−g((∇X Q)Y,W )Z − 1
2

X(r)(g(Z,W )Y −g(Y,W )Z)

for any vector fields X ,Y,Z and W . If the Ricci tensor is parallel, the scalar curvature is a constant and hence
the above equality gives ∇S = 0 ⇒ ∇R = 0. In a word, the manifold is locally symmetric if and only if the
Ricci tensor is parallel for Riemannian three-manifold. Therefore, the following result follows immediately
from Perrone [17, Proposition 3.1].

THEOREM 1 ([17]). The Ricci tensor of an almost coKähler 3-manifold is parallel if and only if the
manifold is locally isometric to a product of a one-dimensional manifold and a Kähler surface of constant
curvature.

We remark that the above product space admits a coKähler structure. This shows that a locally symmetric
almost coKähler 3-manifold must be coKähler. When relaxing Ricci parallelism to Ricci η-parallelism on
an almost contact metric 3-manifold, the complete classification problem is hard to solve. The author [24]
employed a restriction (namely ∇ξ h = ah′ and it is said to be h-a condition) on a strictly almost coKähler
3-manifold to give a local classification result (see [5] for contact metric case and [25] for almost Kenmotsu
case). The following result was proved in [8, 24].

THEOREM 2. The Ricci tensor of an almost coKähler 3-h-a-manifold is η-parallel if and only if the man-
ifold is locally isometric to a product manifold R×N with N being of constant curvature of dimension two or a
Lie group E(1,1), Ẽ(2) or the Heisenberg group Nil3 equipped with a left invariant almost coKähler structure.
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Lie group E(1,1) is the rigid motions group of the Minkowski two-plane and Ẽ(2) is the universal covering
E(2) of the rigid motions group of the Euclidean two-plane.

4. ∗-RICCI PARALLELISM

Let M3 be an almost coKähler 3-manifold. Such a manifold has been studied by many authors (see some
recent references [4, 6, 12, 18, 26]) in recent time. It is known that M3 is coKähler if and only if h = 0. On a
coKähler 3-manifold, now we compute the ∗-Ricci tensor. Applying h = 0 in (10), we obtain Qξ = 0. Using
this and putting Y = Z = ξ in (13) we obtain the Ricci operator

Q =
r
2

I − r
2

η ⊗ξ . (14)

Using (14), by definition (3) and a direct calculation, the ∗-Ricci tensor is given by

S∗ = S. (15)

In view of this, next we consider the ∗-Ricci tensor on an almost coKähler manifold.
Let U1 be the open subset of M3 such that h ̸= 0 and U2 the open subset of M3 defined by U2 = {p ∈ M3 :

h = 0 in a neighborhood of p}. Therefore, U1 ∪U2 is an open and dense subset of M3 and there exists a local
orthonormal basis {ξ ,e,φe} of three smooth unit eigenvectors of h for any point p ∈ U1 ∪U2. On U1, we may
set he = λe and hence hφe =−λφe, where λ is a positive function on U1. Notice that the eigenvalue function
λ is continuous on M3 and smooth on U1 ∪U2. For simplicity, we write e1 := e, e2 := φe and e3 := ξ . The
Levi-Civita connection of the metric on U1 can be seen in [18, Lemma 2.1]. In fact, on U1, we have

∇eie j =

 1
2λ
(e2(λ )+σ(e1))e2 − 1

2λ
(e2(λ )+σ(e1))e1 +λe3 −λe2

− 1
2λ
(e1(λ )+σ(e2))e2 +λe3

1
2λ
(e1(λ )+σ(e2))e1 −λe1

ae2 −ae1 0

 (16)

for any i, j ∈ {1,2,3}, where σ(ek) = g(Qe3,ek) for any k ∈ {1,2} and a is a smooth function. Moreover, on
U1, the Ricci tensor can be written as

S =

 1
2 r+λ 2 −2aλ e3(λ ) σ(e1)

e3(λ )
1
2 r+λ 2 +2aλ σ(e2)

σ(e1) σ(e2) −2λ 2

 (17)

with respect to the local φ -basis {e1,e2,e3}, where r is the scalar curvature. According to (3), with the help of
(16) and (17), on U1, the ∗-Ricci tensor S∗ is given by (see also [22, Lemma 3.1]):

S∗ =

 1
2 r+2λ 2 0 0

0 1
2 r+2λ 2 0

σ(e1) σ(e2) 0

 (18)

with respect to the local φ -basis {e1,e2,e3}.

LEMMA 1. If the ∗-Ricci tensor on U1 is parallel, then λ is invariant along the Reeb flow and (32), (33)
are valid.

Proof. For simplicity, we write ∇iS∗jk := (∇eiS
∗)(e j,ek) for any i, j ∈ {1,2,3}. If the ∗-Ricci tensor is

parallel, from ∇1S∗23 = 0, we get
r =−4λ

2, (19)

where notice that λ on U1 is supposed to be the positive eigenfunction of h. According to ∇1S∗21 = 0, we get

σ(e1) = 0. (20)
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According to ∇2S∗12 = 0, we get
σ(e2) = 0. (21)

In this case, using the above three equalities, from (18), we observe that the ∗-Ricci tensor vanishes identically.
With the help of (19), (20) and (21), the Ricci tensor (17) becomes

S =

−λ 2 −2aλ e3(λ ) 0
e3(λ ) −λ 2 +2aλ 0

0 0 −2λ 2

 (22)

with respect to the local basis {e1,e2,e3}. Note that on any Riemannian manifold the following equality is
valid:

1
2

grad(r) = divQ.

From (22), the scalar curvature is given by r =−4λ 2. Therefore, the above formula becomes

−4λX(λ ) =
3

∑
i=1

(∇eiS)(ei,X) (23)

for any vector field X . By a direct calculation, from (22) and (16), we have:

∇1S13 = λe3(λ ).

∇2S23 = λe3(λ ).

∇3S33 =−4λe3(λ ).

Putting the above three equalities into (23) for X = e3, we obtain

e3(λ ) = 0. (24)

Similarly, by a direct calculation, with the help of (16), (22) and (24), we have:

∇1S11 =−2(a+λ )e1(λ )−2λe1(a).

∇2S21 = 2ae1(λ ).

∇3S31 = 0.

Putting the above three equalities into (23) for X = e1, we obtain

e1(a) = e1(λ ). (25)

Similarly, by a direct calculation, with the help of (16), (22) and (24), we have:

∇1S12 =−2ae2(λ ).

∇2S22 = 2(a−λ )e2(λ )+2λe2(a).

∇3S32 = 0.

Putting the above three equalities into (23) for X = e2, we obtain

e2(a) =−e2(λ ). (26)

According to (16), with the help of (20), (21), the Lie bracket of the Lie algebra containing all tangent
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vector fields is given by

[e1,e2] =− 1
2λ

e2(λ )e1 +
1

2λ
e1(λ )e2, [e2,e3] = (a−λ )e1, [e3,e1] = (a+λ )e2. (27)

Putting these three equalities into the following well-known Jacobi identity

[[e1,e2],e3]+ [[e2,e3],e1]+ [[e3,e1],e2] = 0

yields that

e1(λ −a)+
1

2λ
e3(e2(λ ))+

a−λ

2λ
e1(λ ) = 0 (28)

and

e2(λ +a)+
1

2λ
e3(e1(λ ))−

a+λ

2λ
e2(λ ) = 0, (29)

respectively, where we used (19), (20) and (21). With the help of (25) and (26), (28) and (29) become

e3(e2(λ )) = (λ −a)e1(λ ) (30)

and
e3(e1(λ )) = (λ +a)e2(λ ), (31)

respectively. Taking the derivative of a along [e2,e3], with the aid of the second term of (27), we get

e2(e3(a)) = (a−λ )e1(a)+ e3(e2(a)).

Putting (25), (26) and (30) into the above equality gives

e2(e3(a)) = 2(a−λ )e1(λ ). (32)

Similarly, taking the derivative of a along [e3,e1], with the aid of the third term of (27), we get

e1(e3(a)) =−(a+λ )e2(a)+ e3(e1(a)).

Putting (25), (26) and (31) into the above equality gives

e1(e3(a)) = 2(a+λ )e2(λ ). (33)

This completes the proof.

As seen before, the ∗-Ricci tensor and usual Ricci tensor are the same on a coKähler 3-manifold. So, in
what follows we consider only non-coKähler case. Here we say that an almost coKähler manifold is strictly if
h ̸= 0 everywhere. By a direct calculation, on any strictly almost coKähler manifold, from (11) we have (see
also [18]):

∇ξ h =
ξ (λ )

λ
h−2ah′. (34)

Notice that ξ (λ ) = 0 when ∗-Ricci tensor is parallel. So, in this paper we consider the following condition for
an almost coKähler 3-manifold with ∗-Ricci parallelism:

∥∇ξ h∥/∥h∥ is invariant along the Reeb flow. (⋆)

Before stating our main theorem in this paper, we construct a concrete example of strictly almost coKähler
3-manifold satisfying condition (⋆). Such an example is a special case in [12, Example 3] or [9, Section 5.5].



7 A remark on ∗-Ricci parallelism on almost coKähler 3-manifolds 303

Example 3. Let G be a three-dimensional non-unimodular Lie group endowed with a left invariant metric g
whose Lie algebra is given by

[e1,e2] = e2, [e2,e3] = 0, [e1,e3] = e2,

where {e1,e2,e3} is an orthonomal basis with respect to the metric g.
We define a vector field ξ = e3 and its dual 1-form by η = g(ξ , ·), and a (1,1)-type tensor field φ by

φξ = 0, φe1 = e2 and φe2 =−e1. One can check that (G,φ ,ξ ,η ,g) defines a three-dimensional left invariant
non-coKähler almost coKähler manifold (for more details see [9, 17]). By using the Koszul formula we have

(∇eie j) =

 0 −1
2 ξ

1
2 e2

−e2 − 1
2 ξ e1

1
2 e1

−1
2 e2

1
2 e1 0


for any i, j ∈ {1,2,3}. The Ricci operator is given by

Qξ =−1
2

ξ − e2,Qe1 =−3
2

e1, Qe2 =−1
2

e2 −ξ .

The tensor field h is given by (see also [9, pp. 15]):

hξ = 0, he1 =−1
2

e1, he2 =
1
2

e2.

Moreover, we have λ =−1
2 and a =−1

2 , and then according to (34) we get ∇ξ h = h′. Because in this case both
∥∇ξ h∥ and ∥h∥ are constant, then the condition (⋆) is valid. As introduced before, the authors in [22, Theorem
3.6] need that ξ is a strongly normal unit vector field and also ∥∇ξ h∥ is invariant along ξ . Perrone in [18,
Proposition 4.3] proved that ξ on an almost coKähler 3-manifold is a strongly normal unit vector field if and
only if ξ is minimal (or equivalently, by [18, Theorem 3.1], ξ is an eigenvector field of the Ricci operator) and
∥h∥2 is invariant along {ξ}⊥. However, according to the above equalities, we observe that in our example ξ is
not an eigenvector field of the Ricci operator and hence ξ is not a strongly normal unit vector field.

THEOREM 4. If the ∗-Ricci tensor of a strictly almost coKähler 3-manifold is parallel and (⋆) is valid,
then one of the following statements is valid:

• The manifold is locally isometric to a Lie group E(1,1), Ẽ(2) or Heisenberg group Nil3 equipped with a
left invariant non-coKähler almost coKähler structure.

• There exists a chart (U,(x,y,z)) on an open subset of the manifold such that

e2 =
∂

∂x
, e3 =

∂

∂y
, e1 = f1

∂

∂x
+ f2

∂

∂y
+ f3

∂

∂ z
,

where f1 = α(z)x+2a(z)y+β (z) with α(z), β (z), f2(z) and f3(z) being three functions which vary only
along z.

• There exists a chart (U,(x,y,z)) on an open subset of the manifold such that

e1 =
∂

∂x
, e3 =

∂

∂y
, e2 = f1

∂

∂x
+ f2

∂

∂y
+ f3

∂

∂ z
,

where f̄1 = ᾱ(z)x−2a(z)y+ β̄ (z) with ᾱ(z), β̄ (z), f̄2(z) and f̄3(z) being three functions which vary only
along z.

Proof. In the ∗-Ricci tensor is parallel and (⋆) is valid, according to (34) and Lemma 1, we obtain e3(a) = 0.
Using this in (32) and (33), we get

(a−λ )e1(λ ) = 0 (35)
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and
(a+λ )e2(λ ) = 0, (36)

respectively. If λ is a constant, (25) and (26), together with e3(a) = 0, shows that a is also a constant. Now
(27) becomes

[e1,e2] = 0, [e2,e3] = (a−λ )e1, [e3,e1] = (a+λ )e2. (37)

According to Milnor [15], the manifold is locally isometric to one of Lie groups E(1,1), Ẽ(2) or Heisenberg
group Nil3. For almost coKähler structures defined on these Lie groups we refer the reader to [17, 19]. If λ

is not a constant, in view of (24), there exists an open subset of the manifold such that either e1(λ ) ̸= 0 or
e2(λ ) ̸= 0. Next, we consider these two cases.

If e1(λ ) ̸= 0 on some open subset, say Ω1, we work on this set. From (35) we get λ = a. Moreover, from
(26) we get e2(λ ) = 0. Now (27) becomes

[e1,e2] =
1
2a

e1(a)e2, [e2,e3] = 0, [e3,e1] = 2ae2, (38)

where a is not a constant which is invariant only along the distribution span{e2,e3}. According to the second
equality of (38), the distribution span{e2,e3} is integrable. Then there exists a chart (U,(x,y,z)) for every point
in Ω1 such that

e2 =
∂

∂x
, e3 =

∂

∂y
.

We set e1 = f1
∂

∂x + f2
∂

∂y + f3
∂

∂ z with fi for i ∈ {1,2,3} being three smooth functions. The first equality of (38)
transforms into the following PDEs:

∂ f1

∂x
=− 1

2a
e1(a),

∂ f2

∂x
= 0,

∂ f3

∂x
= 0.

Similarly, the third equality of (38) transforms into the following PDEs:

∂ f1

∂y
= 2a,

∂ f2

∂y
= 0,

∂ f3

∂y
= 0. (39)

If e2(λ ) ̸= 0 on some open subset, say Ω2, we work on this set. From (36) we get λ =−a. Moreover, from
(25) we get e1(λ ) = 0. Now (27) becomes

[e1,e2] =− 1
2a

e2(a)e1, [e2,e3] = 2ae1, [e3,e1] = 0, (40)

where a is not a constant which is invariant only along the distribution span{e1,e3}. According to the third
equality of (40), the distribution span{e1,e3} is integrable. Then there exists a chart (U,(x,y,z)) for every point
in Ω2 such that

e1 =
∂

∂x
, e3 =

∂

∂y
.

We set e2 = f̄1
∂

∂x + f̄2
∂

∂y + f̄3
∂

∂ z with f̄i for i ∈ {1,2,3} being three smooth functions. The first equality of (40)
transforms into the following PDEs:

∂ f̄1

∂x
=− 1

2a
e2(a),

∂ f̄2

∂x
= 0,

∂ f̄3

∂x
= 0.

Similarly, the second equality of (40) transforms into the following PDEs:

∂ f̄1

∂y
=−2a,

∂ f̄2

∂y
= 0,

∂ f̄3

∂y
= 0. (41)
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Solving these PDEs (39) and (41) completes the proof.

Remark 1. Venkatesha et al.’s result (see [22, Theorem 3.6]) becomes a special case of Theorem 4 (corre-
sponding to the case a,λ ∈ R).

Remark 2. According to Theorem 4, one finds non-homogeneous almost coKähler 3-manifolds whose ∗-
Ricci tensor is parallel (or vanishing).

If one computes the derivative of the ∗-Ricci tensor (see also [22, Lemma 3.4]), the following theorem is
true.

THEOREM 5. On an almost coKähler 3-manifold the following conditions are equivalent.

• The ∗-Ricci tensor is vanishing.

• The ∗-Ricci tensor is parallel.

• The ∗-Ricci tensor is of Codazzi type, i.e., (∇X Q∗)Y − (∇Y Q∗)X = 0.

• The ∗-Ricci tensor is of Killing type, i.e., (∇X Q∗)Y +(∇Y Q∗)X = 0.

• The ∗-Ricci tensor is cyclic parallel, i.e., ∑
X ,Y,Z

(∇X S∗)(Y,Z) = 0,

where X ,Y,Z denote arbitrary vector fields.

According to the above two theorems and results in Section three, we observe that the properties of the
∗-Ricci tensors are much different from that of the usual Ricci tensors.

The set of all almost coKähler 3-manifolds is much huge, this makes many authors to consider such man-
ifolds under some other restrictions in which the function defined in (⋆) was discussed in many literature
(see [12, 18, 22–24]).
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