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Abstract. Lane-change (LC) is one of the most important topics in autonomous vehicles (AVs) on 

highways. To enhance the implementation of effective LC in AVs, this paper proposes a framework 

based on deep reinforcement learning, which takes into account heuristic actions and multiple 

constraints related to the centerline of the road and speed, to improve the overall performance of LC 

in AVs.  Firstly, the influence of unreasonable vehicle actions on the algorithm training process is 

studied. To improve the rationality of the to-be-trained actions, a novel reasonable action screening 

mechanism is proposed. Secondly, to keep the vehicle on the centerline of the lane and avoid the 

collision with other vehicles, a method is designed to calculate the center position of the vehicle. 

Thirdly, a segmented speed reward mechanism is proposed to constrain vehicle speed. Subsequently, 

a dynamic reward function is established to train the control algorithm. Lastly, the proposed strategy 

is evaluated in two simulation scenarios of highways. The simulation results show that the proposed 

method can increase the number of reasonable actions by more than 30% and improve the success 

rate of obstacle avoidance with the increase of over 52% in both static and dynamic scenarios 

compared with the benchmark algorithms. 

Key words: lane-change, reasonable actions, constraints, autonomous vehicles, deep reinforcement 

learning. 

1. INTRODUCTION 

Autonomous vehicles (AVs) can effectively alleviate traffic congestion, reduce the number of accidents, 

and improve traffic efficiency. However, according to the report published by the National Highway Traffic 

Safety Administration (NHTSA) [1], there are about 3 million injuries and more than 50 thousand deaths 

caused by car accidents per year, such as misperception (41%), irrational decision (33%), and improper 

operation (11%) [2−3]. Therefore, how to improve AV safe driving in high-risk driving scenarios, especially 

in highway environments, remains a challenge.  

The most important factor affecting driving safety is lane-change (LC), and the integration of linear 

and nonlinear control techniques, along with the exploration of PID control, fuzzy control, and model 

predictive control (MPC) for unmanned driving research, can indeed provide valuable insights [4, 5]. A lot of 

papers [6−9] have adopted the method of machine learning to carry out LC decision-making in recent years. 

The learning-based control method can adapt to the changes of the environment in the training process with 

constraints and does not depend on the initial model and parameters of the system. The adaptability of the 

controller based on non-learning to the variable driving scene is limited, and it depends on the parameter 

selection of the controller. Therefore, learning-based vehicle control methods with constraints have received 
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increasing research. In [6], an LC predictor based on an adaptive fuzzy neural network was proposed to 

predict the turning angle by fusion of vehicle sensor information, greatly improving the prediction accuracy 

of vehicle lane change. [7] proposed a Bayesian network model combined with a Gaussian mixture model to 

estimate the LC intent in different scenarios. [8, 9] used a deep belief network, support vector machine, and 

long-short-term memory to model the LC process which consisted of LC decision and LC implementation. 

However, the above machine learning-based approaches strongly rely on large amounts of training and 

testing data, which is time-consuming and expensive, especially in collecting the crushed data. 

With the development of artificial intelligence, deep reinforcement learning (DRL) brings remarkable 

advantages to the decision-making of AVs in complex scenarios [10, 11]. The purpose of DRL is to learn and 

improve the driving experience through continuous trial-and-error, which means that it can be used to help 

autonomous vehicles avoid collisions [9, 12]. Taking into account the importance of safety in a real driving 

environment, more and more researchers have introduced safety problems into the training of DRL. In [15], a 

DRL algorithm with a safe action set technique was employed in decision-making that was effectively 

coupled to a specially designed trajectory planning model. [16] adopted the safety rule, the safety prediction 

module, the traumatic memory, and the dynamic potential reward function to further improve the safety and 

accelerate the learning of LC behavior. In [17], a direction planning based on the conditional depth Q 

network was proposed to improve the predictive stability of different motion instructions using End-End 

automatic driving. From the previous study of DRL-based control of unmanned vehicles, safety is the 

primary consideration. In the DNN training process, it will inevitably result in some unreasonable actions, 

which will greatly waste training time and reduce training efficiency. Existing studies mainly focus on the 

reward obtained from the interaction between vehicle actions and the environment, but ignore the rationality 

of vehicle actions in the actual driving environment [16], and ultimately limit the improvement of DNN 

training performance. Therefore, the action rationality of DNN must be taken into account, which has rarely 

been studied. Based on this motivation, this paper proposes various constraint methods for DNN output 

action to ensure the safe driving. 

Therefore, in this paper, a heuristic-action-involved action screening method is proposed, which can 

teach the DQN to perform reasonable actions according to the actual road conditions, reducing ineffective 

training time and improving the DQN training efficiency. The main contributions of this paper are 

summarized: 

(1) A heuristic action screening mechanism is introduced to improve the training efficiency of DNN. 

This mechanism helps eliminate unreasonable actions (URA), reducing ineffective training time, and 

improving the overall learning efficiency. 

(2) To achieve a more realistic highway driving environment, segmented speed constraints are adopted 

in this paper, which reduces unnecessary computational burden and lead to faster simulations without 

compromising accuracy. 

(3) To keep the vehicle driving in the middle of the lane, a calculation method of vehicle center  

position is presented with fewer calculation parameters while offering promising application potential. 

2. PROBLEM STATEMENTS 

2.1 Lane-change 

To describe the problem of the LC behavior, a typical LC problem is drawn in Fig. 1. In this scene, the 

red car is the ego vehicle (EV), and the blue cars are the surrounding vehicles (SVs). In general, the three-

lane is the basic scene of LC research, including the main behaviors of LC [19]. During the process of LC, 

the main purpose is overtaking. Therefore, the main parameters are the speed and relative position among the 

EV and SVs [20]. Since the SV behind the EV has little influence on the LC process of the EV, the influence 

of the SV behind the EV is not considered in this paper. 
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Fig. 1 – The lane-changing scene. 
 

Fig. 2 – Kinematic bicycle model of the vehicle 

2.2. Vehicle kinematics 

To reduce the simulation complexity of this study, the impact of external forces on the vehicle is not 

considered. Therefore, according to [21], this paper adopts the kinematic model to simulate  vehicle 

movement. The control of steering and speed will act on this model to guide the vehicle's motion behavior. 

The classical equivalent two-wheel model is shown in Fig. 2. The corresponding kinematic model is [22]: 

cos( )x v=  +  (1) 

sin( )y v=  +  (2) 
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where x  and y  are the coordinates of the centroid of the vehicle model, respectively, v  denotes the velocity 

of the vehicle,   denotes the inertial heading, fl  and rl  denote the distance between the centroid and the 

center of the front wheel and rear wheel, respectively,   denotes the angle between the velocity v  of the 

centroid and the longitudinal axis of the vehicle, va  is the acceleration of the vehicle, f  is the angle 

between the wheel and the longitudinal axis of the vehicle, which determines the driving direction of the 

vehicle. 

3. PREVIOUS SOLUTIONS 

In LC decision-making, the EV selects a series of actions to interact with the environment and then 

learns whether the action is suitable or not according to the feedback of the environment, to maximize the 

cumulative reward of an episode. This process is described by the Markov Decision Process (MDP) 

 , , , ,M S A P R=   (6) 

where S denotes a finite set of states, A denotes a finite set of actions, P denotes the state transition 

probability, R denotes the reward, and   denotes the discount factor.  

The MDP problem is transformed into how to find the optimal policy 
*( , )s a  in (7) to maximize the 

expected state-action value of the EV in continuous interaction with the road environment. As long as this 

value converges, the optimal policy is obtained. The following content uses three kinds of DQN to solve the 

MDP process: 
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where [0,1]  represents the discount of each 1tr + . 

3.1. Nature DQN (NDQN) 

The NDQN consists of two neural networks, one is the current network currentQ  and the other one is the 

target network 
t argetQ̂ [23]. The currentQ  network outputs Q values and then uses the   greedy algorithm to 

select actions. The original state, action, reward, and the next state (i.e.  , , ,s a R s ) will be stored in the 

experience pool. The currentQ  and 
t argetQ̂ output the current ( , , )Q s a   and the target Q value jy , respectively, 

which are utilized to provide the temporal difference (TD) error. The loss function is defined as 

  ( )
2

, , , ~ ( , , )jS A R S MJ y Q s a= −   (8) 

ˆmax ( , , )j
A

y R Q s a


 = +  
 

(9) 

where   denotes the weights of currentQ ,  denotes the weights of 
t argetQ̂ . 

3.2. Double DQN (DDQN) 

In the algorithm of NDQN above, actions are selected by the   greedy algorithm and evaluated by the 

maximum method using (9). Naturally, the overestimation of the Q value will occur to a large extent [24]. In 

DDQN, the action â  is selected from the arg max ( , , )
a

Q s a   , and the target Q value 
targetQ̂  is obtained by 

ˆ , arg max ( , , ),j
a

y R Q s Q s a


 
  = +    

   
(10) 

which avoids the overestimation of the Q value to some extent, and is also the biggest improvement from 

DQN to DDQN. The corresponding loss function is 

  ( )
2

, , , ~ ( , , )jS A R S MJ y Q s a= −   (11) 

3.3. Dueling DQN (DuDQN) 

Traditionally, the DQN uses a single stream output to represent a Q value for each action in a state. The 

structure by which to directly estimate the action values of an individual action is not very efficient, since the 

actions are usually relevant and may have similar values. Instead, it is better to first estimate the state values 

and the relative advantages of every action. The DuDQN decomposes the output Q value into a state value 

and an action advantage value, which can show whether a certain action is better or worse than other actions. 

This dual structure is denoted as 

( , , ) ( , ) ( , , )Q s a V s A s a =  +   (12) 

where ( , )V s   denotes the value of the state s , and ( , , )A s a   denotes the advantage value after taking the 

action a in the state s . In DuDQN, [25] utilized a centralized process to implement an important constraint, 

 ( ) ( , , ) 0a s A s a  = , which is employed to solve unidentifiable problems. After this treatment, the sum of 

all action advantages in the state is 0, and (12) can be rewritten as 
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a
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where  denotes the size of the action space. 

3.4. Parameters calculation 

The specific parameter calculation process is as follows: the program first initializes the parameters of the 

DQN, and the DQN outputs an action for the vehicle to execute. If this action does not cause the vehicle to crash, 

the DQN will receive a positive reward. If a collision occurs, the DQN will be penalized (negative reward). Then, 

the DQN neural network is updated by backpropagating the network parameters based on rewards or punishments. 

The output of the correct actions is reinforced, while the output of the incorrect actions is weakened. The process 

of updating the network parameters is repeated until the vehicle can avoid all obstacles. This process is 

automatically completed in the program code.  

4. PROPOSED METHOD WITH CONSTRAINT ANALYSIS 

4.1. Reasonable action constraint 

The actions output by a DQN in the training phase are random and may sometimes conflict with the 

actual driving rules of the road. The RA meets the actual driving rules of the road, and the URA breaks the 

rules. For example, when the vehicle is in the leftmost lane, if the DQN outputs the action of "turning left", it 

is considered a URA. Similarly, when the vehicle is in the rightmost lane, the action "right turn" is a URA, as 

shown in Fig. 3. The URA does not cause any change to the environment, but it will result in an ineffective 

training process of the DQN. Furthermore, in a real highway driving environment, these actions can cause 

the vehicle to collide with the guardrail, causing many serious accidents. Therefore, these actions are not 

allowed in practice.  

The previous literature [9, 10, 12, 14] has not considered the effect of the URA of the DQN, and the 

DQN is only trained to reduce collisions by penalizing the final accident result. As a result, these methods 

have low efficiency in the training of RA, failing to effectively suppress the output of the URA and reduce 

the training efficiency of the DQN. The aim of the RA constraint designed in this paper is to filter actions 
heuristically according to actual road constraints during driving before the interaction between the action and 

the environment, which can avoid the invalid training caused by the URA to improve the training efficiency. 

 

 

Fig. 3 – Constrain of the URA, 
 

When the DQN outputs a URA, we will negatively reward (penalty) the URA, so that the DQN 

gradually learns to output as few URA as possible. On the contrary, we positively reward the RA to refine the 

‘nice choice’. The reward function for the action is set as 

ACT ACT ACTFlag rewardR =   (14) 

where ACTR  denotes the reward of the action, ACTreward  denotes the reward of RA or URA action, 

generally being a number between 0 and 1, ACTFlag  is a switching variable being +1 for RA and –1 for 

URA. The default value of ACTFlag  is 0. 
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4.2. Speed constraint 

In an actual highway driving environment, the speed limit is an inevitable constraint. To prevent 

vehicles from driving too slowly and causing congestion, a negative reward is given when the speed is less 

than the minimum speed limit on the highway. To encourage vehicles to drive as fast as possible within the 

safe speed range and improve traffic efficiency, a positive reward is given when vehicle speed reaches 

between the lower and upper limits of speed. To ensure safe driving, when the vehicle is overspeeding, a 

negative reward is generated. The speed reward function is shown as 

L_spd EV

spd H_spd EV

over_spd EV

reward

reward

reward

v

R v

v

− 


= 
− 

 (15) 

where spdR  denotes the reward of speed, L_spdreward , H_spdreward , and over_spdreward  denote the rewards for 

low speed ( EV lowSPDv  ), high speed ( low EV highSPD SPDv  ), and overspeed ( EV highSPDv  ), 

respectively, EVv  denotes the speed of the EV, lowSPD  and highSPD  denote the lower bound speed and upper 

bound of speed. 

4.3. Center position constraint 

Generally speaking, human drivers tend to drive close to the center of the road to avoid collisions with 

vehicles in other lanes. [26] used a soft penalty method to calculate the reward value of the distance between 

the vehicle and the sidelines of the lane. [27] utilized the center position and the boundary area to calculate 

the reward for the center position of the vehicle. The above two methods separately calculate the distance 

between the centroid of the vehicle and the road edge, and the distance between the centroid of the vehicle 

and the center of the road, which are too complex and not efficient enough. 

This paper presents a method for calculating the reward of the EV position directly in Fig. 4, which 

avoids the calculation of the EV center position and the lane boundary [28]. The calculation process can be 

expressed as 
2

L R
EV EV

lane
lane

d d
R

W

 −
= − 

 
 (16) 

where laneR  is the reward for a position, being negative, L
EVd , and R

EVd  are the distances between the centroid 

of the EV and the left and right lane boundaries, laneW  is the width of the road. Typically, when the reward 

laneR  is zero, it means that the vehicle is driving in the middle of the lane. 

 

 

Fig. 4 – Constrain of the middle position of the vehicle. 

4.4 Safe constraint 

A vehicle collision will trigger the termination of a training episode and must be avoided during an 

actual driving process. In the simulation, the vehicle can rear-end the front vehicle with an acceleration 

action and may collide with the lateral vehicle under the steering action [29, 30]. The final state of the DQN 

training is that the EV can safely pass all SVs by changing lanes as fast as possible and without collision. If 

there is a collition, a negative reward is written as 



7 A Heuristic-action-involved safe lane-change of autonomous vehicles with multiple constraints 401 

crash crash crashFlag rewardR = −   (17) 

where crashR  denotes the reward for safe driving, crashFlag  is a switching variable, being 0 for safe driving 

and -1 for a crush, crashreward denotes the reward of a crush. 

5. DQN-BASED LC DECISION MAKING 

The main process of the proposed DQN-based LC decision-making is shown in Fig. 5. The action of 

the DQN output is judged whether reasonable or not through the constraints, which are shown in the 

rightmost bold rectangle. The constraints for the highway environment are shown in the leftmost bold 

rectangle. The RA gets the positive reward, and the vehicle will execute the RA in the environment, while the 

URA is punished by giving a negative reward, and the vehicle will not execute the URA in the environment. 

 

 

Fig. 5 – The framework of our proposed methods. 

5.1. State space and action space 

The networks of three kinds of DQN algorithms discussed in Section 3 are realized by the fully 

connected neural network, which has 24 input neurons, 1024 middle layer neurons, and 5 output neurons, 

and the activate function is Relu. The initialization parameter of the network is a Gaussian distribution with 0 

mean value and 0.1 variance. The   greedy algorithm is used to select the output action of the network. The 

state space is the coordinate positions, longitudinal, and lateral velocities of the EV and five SVs, which is 

represented by 

T

0 0 0 1 1 1 5 5 5 50 1, , , , , , , ,   , , ,x y x y x yx y v v x y v v x y v v      =       
s  (18) 

where ix , iy  represents the coordinate position of the vehicle, 
x
iv , y

iv  denote the longitudinal and lateral 

velocities of the vehicle, 0,1, 5i = . The dimension of matrix s is 6 rows and 4 columns. 

The action space represents the result of the DQN output. The EV can use left turn and right turn 

combined with acceleration and deceleration to act on the LC maneuver. If the opportunity of the LC is not 

appropriate, the EV will keep the state as it is. The action space is written as 

 ,  ,  ,  ,  A B T K L R=  (19) 

where A denotes the action space, B, T, K, L and R denote the five actions: break, throttle, keep, turn left, and 

turn right, respectively. 

5.2. Reward function 

Based on the rewards designed in Section 4, the reward function of this paper can be written as 

ACT lane spd crashR R R R R= + + +  (20) 

To ensure that the reward function itself is bounded, the value of R is linearly mapped to (0,1) by the 

equation 
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min
min max

max min

( )

( )

R R
R b b

R R

−
 = +

−
 (21) 

where R  represents the modified reward value, (
minb ,

maxb ) denotes the target range, being (0,1), and 

(
minR ,

maxR ) represents the actual range of R in (20). 

6. EXPERIMENTS ENVIRONMENT 

The simulation environment studied in this paper is a physical simulation environment based on 

Python combined with the highway automatic driving simulation environment (Highway_env) [31], as 

shown in Fig. 6. The green vehicle is the EV, and the blue vehicles are the SVs. They all emerge at random 

positions on the three lanes at the beginning of a new episode. The write arrow denotes the driving direction, 

and the goal of the training is to ensure that the EV can safely overtake all the SVs without colliding as fast 

as possible. 

 

               

(a) Normal driving scenario                                         (b) Lane-change                               (c)Collision 

Fig. 6 – The simulation environment: a) normal driving simulation environment; b) an EV changes lane from left to middle; 

 c) the EV collides a SV from behind. After collision, both EV and SV become red. 
 

Both EV and SVs are modeled using the kinematic model in Section 2.2. The longitudinal movement 

of EV and SVs is described by the IDM (Intelligent Driving Model), and the lateral LC is described by the 

MOBIL (Minimizing Overall Braking Induced by Lane Change) model. A conventional used three-lane road 

is used to set up the vehicle driving environment, accompanied by 19 randomly distributed SVs with a speed 

range 16 ~ 32 m/s (about 60 ~ 115 m/s) and an initial speed of 22 m/s (about 80 km/h). In this paper, both 

dynamic and static scenarios are used to conduct experiments. 

7. RESULTS AND DISCUSSION 

In this section, the three different DQN algorithms combined with the constraints discussed in Section 4 are 

tested. The experiments will be examined in four aspects: reward, RA, speed, and success rate of obstacle 

avoidance in both static and dynamic scenarios. 

7.1. Reward 

In the field of DRL theory, reward is considered the primary metric to assess the strengths and weaknesses 

of different strategies. Fig. 7 displays the reward outcomes of three DQN algorithms, obtained through both static 

and dynamic experiments. The red lines represent the rewards generated from the DQN algorithms that adhere to 

all constraints (NDQN_C, DDQN_C, and DuDQN_C). The blue lines illustrate the rewards generated from the 

DQN algorithms that only incorporate speed constraints (NDQN_SPD, DDQN_SPD, and DuDQN_SPD). The 

green lines indicate the rewards generated from the DQN algorithms that solely employ the RA constraint 

(NDQN_RA, DDQN_RA, and DuDQN_RA). 

Taking the static scenario in Figs. 7a−c for example, the reward curves of NDQN_SPD, NDQN_RA, 

DDQN_SPD, DDQN_RA, DuDQN_SPD, and DuDQN_RA all converge to around 80, while the reward curves of 

NDQN_C, DDQN_C, and DuDQN_C are stably converged to 140, 180, and 125, respectively. The results in the 

dynamic scenario Figs. 7d−f are of the same trends. The reward curves of NDQN_SPD, NDQN_RA, DDQN_SPD, 

DDQN_RA, DuDQN_SPD, and DuDQN_RA all converged to about 80, while the reward curves of NDQN_C, 

DDQN_C, and DuDQN_C are stably converged at 120, 150, and 116, respectively. This phenomenon of the 
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reward value fluctuating in an interval is considered to have reached training convergence in the field of DRL, 

which is different from the stability of the control system. Because the random activities of SVs in dynamic 

scenarios increase the training difficulty of the NDQN algorithms, the converged reward values of the NDQN_C 

in dynamic scenarios are slightly lower than those in static scenarios. 
In [17], the projected area of the vehicle in the lane and the distance between the vehicle and the lane 

center are calculated to constrain the position of the vehicle. Compared with our proposed method, the 

calculation of the vehicle projection area is very complicated, and it is difficult to ensure the accuracy of the 

calculation. Therefore, the practicability of this method deserves further study. The vehicle center position 

algorithm proposed in our paper only calculates the distance difference between the center of the vehicle and 

the lane lines on both sides, which has the characteristics of a simple calculation and increases the training 

efficiency. The reward value in our study entered the convergence range after about 800 training rounds. 

However, the reward value in reference [17] still did not show a convergence trend after 400,000 training 

rounds. Therefore, our proposed algorithm has advantages in producing more rewards and improving DQN 

training efficiency. 

Reference [31] utilizes the same highway simulation environment as ours, which considered the 

rewards generated by vehicle collisions, rightmost lanes, and speed, respectively. Constraints such as 

reasonable actions and vehicle position are not taken into account. Therefore, from the training results, our 

minimum reward value per round is 80, while the maximum reward value per round in [31] is 68.  

Therefore, our proposed algorithm has the advantages of producing more rewards and improving DQN 

training efficiency and has remarkable training stability and convergence. 

 

 

 

Fig. 7 – Reward comparison diagrams of three DQN algorithms in two scenarios: a)−c) static scenario; d)−f) dynamitic scenario. 

7.2. Reasonable action 

To verify the validity of the action constraints described in Section 4.1, the three DQN algorithms 

combined with the action constraints are compared in static and dynamic environments, and the results are 

shown in Fig. 8. In Figs. 8a−f, the horizontal axis represents the training episodes and the vertical axis 

represents the number of RA of each episode. At the beginning of the training (before 400 episodes), the 

three original DQN algorithms NDQN, DDQN, and DuDQN (blue lines) and the three proposed DQN 

algorithms with the RA constraint NDQN_RA, DDQN_RA, and DuDQN_RA (red lines) have the same 

rising rate. 

After about 800 episodes of training, the static scenario in Figs. 8a−c, static scenario, the average 

numbers of the RA of the NDQN_RA, DDQN_RA, and DuDQN_RA are 80, 82, and 96, respectively, 

obviously greater than those of the NDQN, DDQN, and DuDQN. In the dynamic scenario in Figs. 8d−f, 

dynamic scenario, the average numbers of the RA of the NDQN_RA, DDQN_RA, and DuDQN_RA 

algorithms are 95, 110, and 123, respectively, greater than those of the NDQN, DDQN, and DuDQN. 

Obviously, in both scenarios, the proposed DQN algorithms with RA constraints can produce more 

reasonable actions. 



404 Jun CHEN, Fazhan TAO, Zhumu FU, Haochen SUN, Nan WANG 10 

 

 

Fig. 8 – RA comparison diagrams of three DQN algorithms in two scenarios with and without RA constraints: 

a)–c) static scenario; d)–f) dynamitic scenario. 
 

Compared with the three original DQN algorithms in the static scenario, the total number of the RA 

generated by the NDQN_RA, DDQN_RA, and DuDQN_RA increases from 314956, 308969, and 313927 to 

393942, 393826, and 393950, with obvious increases of 25.07%, 27.46%, and 25.49%, respectively. And in 

the dynamic scenario, the total number of the RA generated by the NDQN_RA, DDQN_RA, and 

DuDQN_RA increases from 292983, 299045, and 302626 to 393850, 393947, and 394053, with obvious 

increases of 34.43%, 31.74%, and 30.21%, respectively. The results show that the RA constraint plays an 

important role in improving the reasonability of the actions, which proves that our heuristic-action-involved 

method is effective. 

7.3. Speed 

To verify the feasibility of the speed constraints described in Section 4.2, the results of the three DQN 

algorithms combined with the speed constraints in static and dynamic environments are shown in Fig. 9. 

Similarly, the horizontal axis represents the training episodes and the vertical axis represents the average 

vehicle speed of each episode. The red curves indicate the average speeds of the three proposed DQN 

algorithms with speed constraints, named NDQN_SPD, DDQN_ SPD, and DuDQN_ SPD, and the blue 

curves indicate the average speeds of the three original DQN algorithms, named NDQN, DDQN, and 

DuDQN.  

 

 

Fig. 9 – Speed comparison diagrams of three DQN algorithms in two scenarios with and without speed constraints: 

a)–c) static scenario; d)–f) dynamitic scenario. 
 

In the static scene in Figs. 9a−c, the average speeds of the NDQN_SPD, DDQN_SPD, and 

DuDQN_SPD are 31.31 m/s, 31.35 m/s, and 31.29 m/s, with an improvement of 5.36 m/s, 6.84 m/s, and 
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7.38 m/s, compared with the three original DQN algorithms, respectively. In the dynamic scene, in Figs. 9d−f, 

the average speeds of the NDQN_SPD, DDQN_SPD, and DuDQN_SPD are 31.31 m/s, 31.35 m/s, and 

31.29 m/s, with the improvement of 5.36 m/s, 6.84 m/s, and 7.38 m/s, compared with three original DQN 

algorithms, respectively. 

The above results can be analyzed as follows. First, the speed reward function (15) designed in this 

paper can effectively train the EV to drive as fast as possible. Therefore, the final maximum speed of our 

training was 31.32 m/s, which is greater than 30 m/s in [31]. Second, the stable and fast EV driving indicates 

that the center position constraint in (16) can avoid collisions to some extent. Because a vehicle collision will 

immediately terminate the current training episode, which results in a shorter training time and an 

insufficient acceleration duration, leading to a lower average speed. Third, without the constraints of the 

center position, the random motion exploration of DQN will produce steering frequently, making the vehicle 

sway near the center of the lane and greatly reducing the longitudinal speed of the vehicle. All these results 

indicate that the three original DQN algorithms without speed constraint will make the EV adopt a more and 

more conservative driving policy to avoid collisions, which is consistent with the results in the existing 

literature [11, 14]. 

7.4. Success rate in obstacle avoidance 

The ultimate purpose of all the above constraints is to improve the vehicle's ability to change lanes and 

avoid obstacles. The number of successful obstacle avoidance episodes (NSOAE) in the static and dynamic 

results is listed in Table 1. Since the experimental results in the two scenarios have the same upward trends, 

only the results in the static state are analyzed here. 

The NSOAE of the three proposed DQN algorithms combined with RA constraints only increased by 

2.77%, 4.94%, and 9.33% compared with the original DQN algorithms, respectively. This is because the RA 

constraint only estimates whether an action conflicts with the environment, but does not contribute to the LC 

and obstacle avoidance. 

 

Because the speed constraint greatly improves the average speed of the vehicle in successful obstacle 

avoidance episodes, the vehicle can complete each SOAE with fewer training steps. Also, the total number of 

training steps is fixed; therefore, the DQN algorithm with the speed constraint generates more SOAE. When 

using NDQN_SPD, DDQN_SPD, and DuDQN_SPD, the NSOAEs increase from 1014, 931, and 943, to 

1520, 1483, and 1504, respectively, with an improvement of 49.91%, 59.29%, and 59.49% compared with 

those of NDQN, DDQN, and DuDQN. Last, the NSOAEs of NDQN_C, DDQN_C, and DuDQN_C increase 

Table 1 

The metrics using different DQN in the static scenario 

Method 
Static Dynamic 

NSOAE  (%) NSOAE  (%) 

NDQN 1014 -- 923 -- 

DDQN 931 -- 922 -- 

DuDQN 943 -- 954 -- 

NDQN_RA 1041 ↑ 2.77% 949 ↑ 2.82% 

DDQN_RA 977 ↑ 4.94% 952 ↑ 3.25% 

DuDQN_RA 1031 ↑ 9.33% 992 ↑ 3.98% 

NDQN_SPD 1520 ↑ 49.91% 1435 ↑ 55.64% 

DDQN_SPD 1483 ↑ 59.29% 1460 ↑ 58.35% 

DuDQN_SPD 1504 ↑ 59.49% 1494 ↑ 62.34% 

NDQN_C 1542 ↑ 52.07% 1413 ↑ 53.09% 

DDQN_C 1490 ↑ 60.04% 1407 ↑ 52.61% 

DuDQN_C 1454 ↑ 54.19% 1470 ↑ 54.09% 
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to 1542, 1490, and 1454, with an improvement of 52.07%, 60.04%, and 54.19%. compared with those of 

NDQN, DDQN, and DuDQN. 

Furthermore, after adding the center position constraint, it can not only effectively increase the 

longitudinal speed and reduce the latitude speed, but also control the EV to remain in the middle of the lane, 

reducing the possibility of collision with SVs in adjacent lanes and improving the NSOAE at the same time. 

Because the RA constraint only estimates whether an action conflicts with the environment, the 

improvements of the NSOAE of DQN algorithms with the RA constraint are not obvious.  

Primarily, the integration of all constraints into the DQN algorithms enhances the EV's ability to 

accurately detect the relative positions and speeds of SVs, thereby enabling the prediction of potential risks 

in complex environments. Consequently, the model can generate appropriate actions to avoid collisions. The 

experimental results demonstrate that these novel approaches outperform the original DQN-based methods in 

both static and dynamic scenarios. 

8. CONCLUSIONS 

In this paper, the constraints-based NDQN, DDQN, and DuDQN algorithms are used to analyze the LC 

and overtaking behavior of autonomous vehicles. First, the states of the LC and the vehicle dynamics model 

are clearly described. Second, the action constraint, speed constraint, center position constraint, and collision 

constraint are proposed. These constraints can help the AV to improve speed and ensure driving safety. Third, 

the experimental results show that the DQN algorithms combined with all constraints can obtain the largest 

number of reasonable actions, the fastest speeds, and the highest rewards in both static and dynamic 

simulation environments.  

Although the proposed methods have been validated by experiments, our research still has some 

limitations as follows. 

A more complex distribution of SVs needs to be experimentally verified. In the simulation environment, 

the SVs kept a certain safe distance. However, in the actual driving environment, this safe distance is not 

necessarily guaranteed. How to make the vehicle accurately recognize these distance changes is the focus of 

our future research. The driving style of the driver must be studied. Different driving styles will have 

different results in the same driving environment. The existing literature [32] has shown that driving style 

can significantly affect drivers' LC decisions. The driving style is the key research point in the future. 
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